Phenylethyl Glycosides from *Globularia alypum* Growing in Turkey

by Hasan Kırmızıbekmez*^a), Carla Bassarello^b), Sonia Piacente^b), and İhsan Çalış^c)

^a) Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-34755 Kayışdağı, İstanbul

(phone: +90-216-5780000-3050; fax: +90-216-5780068; e-mail: hasankbekmez@yahoo.com) ^b) Salerno University, Department of Pharmaceutical Sciences, Via Ponte Don Melillo, I-84084 Fisciano-Salerno

^c) Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-06100 Ankara

From the leaves of *Globularia alypum*, three new phenylethyl glycosides, namely galypumosides A $(=2-(3,4-dihydroxyphenyl)ethyl O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-[(E)-caffeoyl]-6-O-[(E)-p-coumaroyl]- β -glucopyranoside; **1**), B $(=2-(3,4-dihydroxyphenyl)ethyl O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-[(E)-caffeoyl]-6-O-[(E)-feruloyl]- β -glucopyranoside; **2**), and C $(=2-(3,4-dihydroxyphenyl)ethyl O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-[(E)-caffeoyl]-6-O-menthiafoloyl- β -glucopyranoside; **3**), were isolated, together with two known phenylethyl glycosides, calceolarioside A and verbascoside. Eight iridoid glucosides, catalpol, globularicisin, globularin, globularinin, globularinin, lytanthosalin, and alpinoside, a flavon glycoside, 6-hydroxyluteolin 7-O-sophoroside, a lignan glycoside, syringaresinol 4'-O- β -glucopyranoside, and a phenylpropanoid glycoside, syringin, were also obtained and characterized. The structures of the isolates were elucidated on the basis of 1D- and 2D-NMR experiments as well as HR-MALDI-MS.

1. Introduction. – Globularia alypum L. (formerly Globulariaceae, now Plantaginaceae) is a shrub distributed in the Mediterranean area. It is one of the nine species of the genus Globularia growing in Turkey [1][2]. G. alypum is widely utilized in indigenous systems of medicine in some Mediterranean countries, as a hypoglycaemic agent, laxative, cholagogue, and stomachic [3]. In Moroccan folk medicine, G. alypum is one of the mostly used medicinal plants for the treatment of diabetes and hypertension [4]. Several biological studies on this plant showed its significant hypoglycaemic activity in rats [5–7]. Antioxidant effects of G. alypum extract and its constituents have also been reported [8]. Recent phytochemical researches on this plant have resulted in the isolation of various types of iridoid glucosides [9] as well as phenylethyl and flavonoid glycosides [10]. As a part of our continuing phytochemical investigations on the members of the genus Globularia from the flora of Turkey [11–15], we have investigated the chemical constituents of G. alypum. In this article, we describe the isolation and structural elucidation of the new phenylethyl glycosides $1-3^1$).

2. Results and Discussion. – The air-dried leaves of *G. alypum* were extracted with MeOH. The H_2O -soluble part of the MeOH extract was separated by a combination of

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

various chromatographic methods to obtain the three new phenylethyl glycosides 1-3, in addition to 13 known metabolites: two phenylethyl glycosides, calceolarioside A [16] and verbascoside [17], eight iridoid glucosides, catalpol, globularicisin, globularin, globularidin, globularinin, globularimin [18], lytanthosalin [19], and alpinoside [20], a flavon glycoside, 6-hydroxyluteolin 7-*O*-sophoroside [21], a lignan glycoside, syringaresinol 4'-*O*- β -D-glucopyranoside [22], and a phenylpropanoid glycoside, syringin [18]. All these known compounds were characterized by comparison of their spectroscopic data (1D- and 2D-NMR and MS) with previously published data.

Compound **1** was obtained as an amorphous powder. Its molecular formula was determined to be $C_{38}H_{42}O_{17}$ by the $[M + Na]^+$ ion peak at m/z 793.2327 in the HR-MALDI-MS. Based on further spectroscopic data (¹H- and ¹³C-NMR (*Table 1*), HSQC, and HMBC spectra), the structure of **1** was identified as 2-(3,4-dihydroxy-phenyl)ethyl *O*- α -rhamnopyranosyl-(1 \rightarrow 3)-4-*O*-[(*E*)-caffeoyl]-6-*O*-[(*E*)-*p*-coumaro-yl]- β -glucopyranoside¹)²), and named galypumoside A.

The ¹H-NMR spectrum of **1** showed the characteristic signals arising from an (*E*)-caffeoyl moiety²), *i.e.*, three aromatic H-atoms as an *ABX* system at δ 7.08 (*d*, *J* = 2.0 Hz), 6.97 (*dd*, *J* = 8.1 and 2.0 Hz), and 6.78 (*d*, *J* = 8.1 Hz) and two *trans*-olefinic H-atoms as an *AB* system at δ 7.63 and 6.30 (*d*, *J* = 15.9 Hz), from an (*E*)-*p*-coumaroyl moiety²), *i.e.*, four aromatic resonances as an *AA'BB'* system at δ 7.33 and 6.76 (*d*, *J* = 8.5 Hz) and two *trans*-olefinic H-atoms as an *AB* system at δ 7.62 and 6.29 (*d*, *J* = 15.7 Hz), and from a 2-(3,4-dihydroxyphenyl)ethoxy group, *i.e.*, three aromatic H-atoms as an *ABX* system at δ 6.72 (*d*, *J* = 1.6 Hz), 6.68 (*d*, *J* = 8.1 Hz), and 6.58 (*dd*, *J* = 8.1 and 1.6 Hz), two geminal

²) Caffeic acid = 3-(3,4-dihydroxyphenyl)prop-2-enoic acid, p-coumaric acid = 3-(4-hydroxyphenyl)prop-2-enoic acid, ferulic acid = 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid, and menthia-folic acid = 6-hydroxy-2,6-dimethylocta-2,7-dienoic acid.

	1		2	
	$\delta(\mathrm{H})^{\mathrm{b}})$	$\delta(C)^{c})$	$\delta(\mathrm{H})^{\mathrm{b}})$	$\delta(C)^c)$
Aglycone:				
C(1)	_	131.0	_	131.0
H-C(2)	6.72 (d, J = 1.6)	117.0	6.72 (d, J = 1.8)	117.0
C(3)	_	145.6	_	145.6
C(4)	_	144.3	_	144.3
H-C(5)	6.68 (d, J = 8.1)	116.2	6.67 (d, J = 8.1)	116.2
H-C(6)	6.58 (dd, J = 1.6, 8.1)	121.2	6.58 (dd, J = 8.1, 1.8)	121.2
$CH_2(\alpha)$	3.78 - 4.02 (m)	72.5	3.78 - 4.01 (m)	72.5
$CH_2(\beta)$	2.83(t, J = 8.3)	36.5	2.83(t, J = 8.3)	36.5
Glc:				
H - C(1')	4.46 (d, J = 8.1)	104.1	4.46 (d, J = 7.9)	104.5
H-C(2')	3.47 (dd, J = 8.1, 8.9)	76.0	3.46 (dd, J = 9.1, 7.9)	76.2
H-C(3')	3.89(t, J = 8.9)	81.4	3.88(t, J=9.1)	81.4
H-C(4')	5.08(t, J = 9.3)	70.8	5.08(t, J=9.3)	70.8
H-C(5')	3.83 - 3.88 (m)	72.7	3.83 - 3.88 (m)	73.0
$CH_2(6')$	4.31 (dd, J = 12.1, 2.0),	63.9	4.29 ^d)	64.2
2()	4.27 (dd, J = 12.1, 4.0)		,	
Rha:				
H - C(1'')	5.23 (d, J = 1.6)	102.9	5.23 (d, J = 1.6)	102.9
H-C(2'')	3.96 (dd, J = 3.0, 1.6)	72.2	3.96 (dd, J = 3.0, 1.6)	72.2
H - C(3'')	3.61 (dd, J = 9.5, 3.0)	71.5	3.61 (dd, J = 9.5, 3.0)	71.5
H - C(4'')	3.32(t, J=9.5)	73.5	3.32(t, J=9.5)	73.5
H-C(5'')	3.57 - 3.62 (m)	70.7	3.57 - 3.62 (m)	70.7
Me(6")	1.12(d, J = 6.1)	18.5	1.12 (d, J = 6.1)	18.5
Caffeoyl ²):				
C(1''')	_	127.4	_	127.3
H - C(2''')	7.08 (d, J = 2.0)	115.1	7.07 (d, J = 2.0)	115.2
C(3''')	_	146.5	_	146.5
C(4''')	_	149.5	_	149.5
H - C(5''')	6.78 (d, J = 8.1)	116.5	6.78 (d, J = 8.1)	116.4
H-C(6''')	6.97 (dd, J = 8.1, 2.0)	123.2	6.95 (dd, J = 8.1, 2.0)	122.9
$H-C(\alpha')$	6.30 (d, J = 15.9)	114.8	6.31 (d, J = 15.9)	114.7
$H-C(\beta')$	7.63 (d, J = 15.9)	147.0	7.62 (d, J = 15.9)	147.8
C=O	_	168.0	_	167.7
<i>p</i> -Coumaroyl/ Feruloyl ²):				
C(1'''')	-	126.9	_	127.3
H - C(2'''')	7.33 (d, J = 8.5)	131.0	7.11 (d, J = 2.0)	111.4
H - C(3'''')	6.76 (d, J = 8.5)	116.5	_	150.2
C(4'''')	=	161.1	_	149.0
H - C(5'''')	6.76 (d, J = 8.5)	116.5	6.77 (d, J = 8.1)	116.4
H - C(6'''')	7.33 (d, J = 8.5)	131.0	6.97 (dd, J = 8.1, 2.0)	124.1
$H-C(\alpha'')$	6.29 (d, J = 15.7)	114.5	6.35 (d, J = 15.9)	114.4
$H-C(\beta'')$	7.62 (d, J = 15.7)	147.0	7.62 (d, J = 15.9)	147.1
C=O	_	168.6	_	168.3
MeO	_	_	3.84(s)	56.3
				2010

Table 1. ¹*H*- and ¹³*C*-*NMR* Data^a) (CD₃OD) of **1** and **2**¹). δ in ppm, J in Hz.

^a) All $\delta(H)$ and $\delta(C)$ assignments are based on 2D-NMR (COSY, HSQC, HMBC) spectral data. ^b) Recorded at 600 MHz. ^c) Recorded at 150 MHz). ^d) Signal pattern unclear due to overlapping. benzylic CH₂ H-atoms at δ 2.83 (t, J = 8.3 Hz), and two nonequivalent oxygenated CH₂ H-atoms at δ 4.02 and 3.78 (each 1 H, m). Furthermore, two anomeric-H-atom resonances appeared at δ 4.46 (d, J = 8.1 Hz, H–C(1') of β -glucose) and 5.23 (d, J = 1.6 Hz, H–C(1'') of α -rhamnose), indicating a diglycosidic structure, which was confirmed by the corresponding anomeric C-atom resonances at δ 104.1 and 102.9 in the ¹³C-NMR spectrum (*Table 1*). The remaining C-signals of the sugar units indicated that β -glucose is glycosylated at C(3') (δ 81.4), while α -rhamnose is terminal. The NMR data of **1** were found to be similar to those of verbascoside [17], except for the additional (E)-p-coumaroyl signals of **1**. The downfield shifts for CH₂(6') (δ 4.31 and 4.27) and C(6') (δ 63.9) and the upfield shift for C(5') (δ 72.7) established the esterification site of the (E)-p-coumaroyl unit to be at OH–C(6') of the glucose. Interpretation of the HMBC spectrum permitted the determination of all the interfragmental connectivities. Thus, cross-peaks were observed between H–C(1') (δ 4.46) of glucose and C(α) (δ 72.5) of the (dihydroxyphenyl)ethyl moiety, between H–C(1'') (δ 5.03) of rhamnose and C(3') (δ 81.4) of glucose, between H–C(4') (δ 5.08) of glucose and the carbonyl C-atom (δ 168.6) of the p-coumaroyl moiety. Consequently, compound **1** was found to be a new verbascoside derivative.

Compound **2** was obtained as an amorphous powder. Its molecular formula was determined to be $C_{39}H_{44}O_{18}$ by the $[M + Na]^+$ ion peak at m/z 823.2431 in the HR-MALDI-MS. The ¹H- and ¹³C-NMR spectrum (*Table 1*) revealed the presence of signals indicative of an (*E*)-caffeoyl moiety, a 2-(3,4-dihydroxyphenyl)ethoxy group, and two anomeric H-atoms. These findings suggested the presence of a verbascoside skeleton in **2** as in **1**. The complete analysis of the remaining ¹H- and ¹³C-NMR signals assigned by 1D-TOCSY and 2D-NMR techniques (COSY, HSQC, and HMBC) indicated that **2** possesses an (*E*)-feruloyl moiety²) instead of the (*E*)-*p*-coumaroyl unit attached to OH-C(6') of β -glucose. Thus, the structure of **2** was determined to be 2-(3,4-dihydroxyphenyl)ethyl O- α -rhamnopyranosyl-(1 \rightarrow 3)-4-O-[(*E*)-caffeoyl]-6-O-[(*E*)-feruloyl]- β -glucopyranoside¹)²), and named galypumoside B.

The final structure proof came from a HMBC experiment with **2**, in which cross-peaks between H-C(1') (δ 4.46) of glucose and $C(\alpha)$ (δ 72.5) of the (dihydroxyphenyl)ethyl moiety, between H-C(1'') (δ 5.23) of rhamnose and C(3') (δ 81.4) of glucose, between H-C(4') (δ 5.08) of glucose and the C=O C-atom (δ 167.7) of the caffeoyl unit, and between $CH_2(6')$ (δ 4.29) of glucose and the C=O C-atom (δ 168.3) of the (*E*)-feruloyl moiety²) were observed.

Compound **3** was obtained as amorphous powder. The molecular formula, $C_{39}H_{50}O_{17}$, requiring 15 degrees of unsaturation, was deduced by a combination of HR-MALDI-MS ($[M + Na]^+$ at m/z 813.3056) and ¹³C-NMR data (*Table 2*). The ¹H- and ¹³C-NMR, COSY, HSQC, and HMBC (*Table 2* and *Figure*) experiments established the structure of compound **3** as 2-(3,4-dihydroxyphenyl)ethyl *O*- α -rhamnopyranosyl-($1 \rightarrow 3$)-4-*O*-[(*E*)-caffeoyl]-6-*O*-menthiafoloyl- β -glucopyranoside¹)²) which was named galypumoside C.

Analysis of the ¹H- and ¹³C-NMR spectra of **3** (*Table 2*) showed the presence of an (*E*)-caffeoyl, a 2-(3,4-dihydroxyphenyl)ethoxy, and a disaccharide moiety, similar to compounds **1** and **2**, indicating the existence of a verbascoside skeleton. The ¹³C-NMR spectrum of **3** displayed 39 resonances, eight of which could be ascribed to the aglycone (2-(3,4-dihydroxyphenyl)ethyl unit), and nine of which were attributed to an aromatic acyl unit ((*E*)-caffeoyl moiety), while 12 of which were ascribed to the sugar portion (β -glucose and α -rhamnose). All the remaining ¹³C signals (169.1, 145.8, 144.9, 127.9, 112.2, 73.3, 41.6, 27.5, 24.2, and 12.0) established by HSQC and HMBC experiments (*Figure*) were assignable to a C₁₀ acyclic monoterpenoid acid with three unsaturations. The ¹H-NMR spectrum of **3** exhibited signals of an

1528

$o(H)^{\circ}$ $o(C)^{\circ}$ HMBC (HC) Aglycone:		6 (TT) h)	5 (G) ()	
Aglycone: 131.1 C(1) - 131.1 H $-C(2)$ 6.70 (d, $J = 1.8$) 116.7 C(3), C(4), C(6) C(3) - 144.5 H $-C(5)$ 6.69 (d, $J = 8.1$) 116.2 C(1), C(3), C(4) H $-C(6)$ 6.58 (dd, $J = 8.1, 1.8$) 120.8 C(2), C(4) CH ₄ (a) 3.75 -3.98 (m) 7.4 C(1), C(1) CH ₂ (b) 2.81 (t, $J = 8.3$) 36.4 C(a), C(1), C(2), C(6) Gle: - - - 14.5 H $-C(1)$ 4.43 (d, $J = 7.9$) 104.2 C(a) H $-C(2)$ 3.42 (dd, $J = 9.1, 7.9$) 76.0 - H $-C(2)$ 3.42 (dd, $J = 9.1, 7.9$) 76.0 - H $-C(2)$ 3.40 (t, $J = 9.3$) 70.6 C=O (caffeoyl) H $-C(5)$ 3.80 -3.86 (m) 73.0 - Rha: - - - H $-C(2'')$ 3.94 (dd, $J = 3.0, 1.6$) 72.1 H $-C(2'')$ 3.94 (dd, $J = 3.0, 1.6$) 72.1 H $-C(4'')$ 3.31 (t, $J = 9.5$, 3.0) 71.5 H $-C(4'')$ 3.16		$\delta(\mathrm{H})^{\mathrm{b}})$	$\delta(C)^c$	HMBC $(H \rightarrow C)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Aglycone:			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C(1)	-	131.1	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H-C(2)	6.70 (d, J = 1.8)	116.7	C(3), C(4), C(6)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C(3)	-	146.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)	-	144.5	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(5)	6.69 (d, J = 8.1)	116.2	C(1), C(3), C(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(6)	6.58 (dd, J = 8.1, 1.8)	120.8	C(2), C(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$CH_2(\alpha)$	3.75 - 3.98(m)	72.4	C(1'), C(1)
	$CH_2(\beta)$	2.81 (t, J = 8.3)	36.4	$C(\alpha), C(1), C(2), C(6)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Glc:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H - C(1')	4.43 (d, J = 7.9)	104.2	$C(\alpha)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(2')	3.42 (dd, J = 9.1, 7.9)	76.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(3')	3.86(t, J = 9.1)	81.2	
$\begin{array}{lll} \mathrm{H}-\mathrm{C}(5') & 3.80-3.86 \ (m) & 73.0 \\ \mathrm{CH}_2(6') & 4.26^d) & 64.1 & \mathrm{C}=\mathrm{O} \ (\mathrm{menthiafoloyl}) \\ \mathrm{Rha:} & & & \\ \mathrm{H}-\mathrm{C}(1'') & 5.22 \ (d, J=1.6) & 102.9 & \mathrm{C}(3') \\ \mathrm{H}-\mathrm{C}(2'') & 3.94 \ (dd, J=3.0, 1.6) & 72.1 \\ \mathrm{H}-\mathrm{C}(3'') & 3.61 \ (dd, J=9.5, 3.0) & 71.5 \\ \mathrm{H}-\mathrm{C}(4'') & 3.31 \ (t, J=9.5) & 73.6 \\ \mathrm{H}-\mathrm{C}(5'') & 3.57-3.60 \ (m) & 70.6 \\ \mathrm{Me}(6'') & 1.12 \ (d, J=6.1) & 18.2 \\ \mathrm{Caffeoyl}^{1}: & & \\ \mathrm{C}(1''') & - & 127.2 \\ \mathrm{H}-\mathrm{C}(2''') & 7.07 \ (d, J=2.0) & 114.9 & \mathrm{C}(4'''), \mathrm{C}(6''') \\ \mathrm{C}(3''') & - & 146.7 \\ \mathrm{C}(4''') & - & 146.7 \\ \mathrm{C}(4''') & - & 149.6 \\ \mathrm{H}-\mathrm{C}(5''') & 6.80 \ (d, J=8.1) & 116.3 & \mathrm{C}(1''') \\ \mathrm{H}-\mathrm{C}(6''') & 6.98 \ (dd, J=8.1, 2.0) & 123.1 & \mathrm{C}(2'''), \mathrm{C}(\beta') \\ \mathrm{H}-\mathrm{C}(a') & 6.28 \ (d, J=15.9) & 114.3 & \mathrm{C}(1'''), \mathrm{C}=\mathrm{O} \ \mathrm{C}(\beta) \\ \mathrm{H}-\mathrm{C}(\beta) & 7.60 \ (d, J=15.9) & 147.8 & \mathrm{C}(2'''), \mathrm{C}(\beta'') \\ \mathrm{C}(5''') & - & 169.1 \\ \mathrm{C}(2''') & - & 169.1 \\ \mathrm{C}(2''') & - & 169.1 \\ \mathrm{C}(2''') & - & 127.9 \\ \mathrm{H}-\mathrm{C}(3''') & 6.80^{\mathrm{d}} & 144.9 & \mathrm{C}(1''''), \mathrm{C}(9'''') \\ \mathrm{C}(4_{2}(4''') & 2.13-2.20 \ (m) & 24.2 & \mathrm{C}(2'''), \mathrm{C}(5'''') \\ \mathrm{C}(5'''') & 1.52-1.56 \ (m) & 41.6 & \mathrm{C}(3''''), \mathrm{C}(5'''') \\ \mathrm{C}(5'''') & 5.21 \ (dd, J=17.6, 1.0.9) & 145.8 & \mathrm{C}(6'''') \\ \mathrm{C}(4''') & 5.21 \ (dd, J=17.6, 1.4) \ 5.06 & 112.2 & \mathrm{C}(6'''') \\ \mathrm{C}(4'''') & 1.80 \ (s) & 12.0 & \mathrm{C}(1'''), \mathrm{C}(2''''), \mathrm{C}(3'''') \\ \mathrm{Me}(10'''') & 1.80 \ (s) & 12.0 & \mathrm{C}(1''''), \mathrm{C}(5'''') \\ \mathrm{Me}(10'''') & 1.23 \ (s) & 27.5 & \mathrm{C}(5''''), \mathrm{C}(5'''') \\ \mathrm{C}(5'''') \ \mathrm{C}(5'''') \ \mathrm{C}(5'''') \\ \mathrm{Me}(10'''') & 1.23 \ (s) & 27.5 & \mathrm{C}(5''''), \mathrm{C}(5''') \\ \mathrm{C}(5'''') \	H-C(4')	5.04(t, J = 9.3)	70.6	C=O (caffeoyl)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(5')	3.80 - 3.86 (m)	73.0	
Rha: Image: Constraint of the system of	CH ₂ (6')	4.26 ^d)	64.1	C=O (menthiafoloyl)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Rha:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H - C(1'')	5.22 (d, J = 1.6)	102.9	C(3')
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(2")	3.94 (dd, J = 3.0, 1.6)	72.1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(3")	3.61 (dd, J = 9.5, 3.0)	71.5	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(4")	3.31(t, J = 9.5)	73.6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(5")	3.57 - 3.60 (m)	70.6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Me(6")	1.12 (d, J = 6.1)	18.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Caffeoyl ¹):			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1''')	_	127.2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(2"')	7.07 $(d, J = 2.0)$	114.9	C(4'''), C(6''')
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3''')	_	146.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4''')	-	149.6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(5''')	6.80 (d, J = 8.1)	116.3	C(1''')
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(6''')	6.98 (dd, J = 8.1, 2.0)	123.1	$C(2'''), C(5'''), C(\beta')$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$H-C(\alpha')$	6.28 (d, J = 15.9)	114.3	$C(1'''), C=O, C(\beta')$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H-C(\beta')$	7.60 (d, J = 15.9)	147.8	C(2"'), C(6"'), C(1"'), C=O
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C=O	_	168.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Menthiafoloyl ¹):			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1'''')	-	169.1	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C(2'''')	-	127.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3'''')	6.80 ^d)	144.9	C(1''''), C(9'''')
$\begin{array}{ccccccc} {\rm CH}_2(5^{\prime\prime\prime\prime\prime}) & 1.52-1.56 \ (m) & 41.6 & {\rm C}(3^{\prime\prime\prime\prime\prime}), {\rm C}(6^{\prime\prime\prime\prime\prime}), {\rm C}(7^{\prime\prime\prime\prime\prime}), {\rm C}(10^{\prime\prime\prime\prime}) \\ {\rm C}(6^{\prime\prime\prime\prime}) & - & 73.3 \\ {\rm H-C}(7^{\prime\prime\prime\prime}) & 5.86 \ (dd, J=17.6, 10.9) & 145.8 & {\rm C}(6^{\prime\prime\prime\prime}) \\ {\rm CH}_2(8^{\prime\prime\prime\prime}) & 5.21 \ (dd, J=17.6, 1.4) \ 5.06 & 112.2 & {\rm C}(6^{\prime\prime\prime\prime}) \\ & (dd, J=10.9, 1.4) \\ {\rm Me}(9^{\prime\prime\prime\prime}) & 1.80 \ (s) & 12.0 & {\rm C}(1^{\prime\prime\prime\prime}), {\rm C}(2^{\prime\prime\prime\prime}), {\rm C}(3^{\prime\prime\prime\prime}) \\ {\rm Me}(10^{\prime\prime\prime\prime}) & 1.23 \ (s) & 27.5 & {\rm C}(5^{\prime\prime\prime\prime}), {\rm C}(6^{\prime\prime\prime\prime}) \end{array}$	CH ₂ (4'''')	2.13 - 2.20 (m)	24.2	C(2''''), C(3''''), C(5'''')
$\begin{array}{ccccccc} C(6''') & - & 73.3 \\ H-C(7''') & 5.86 & (dd, J = 17.6, 10.9) & 145.8 & C(6''') \\ CH_2(8''') & 5.21 & (dd, J = 17.6, 1.4) & 5.06 & 112.2 & C(6''') \\ & & & & & & & & & \\ (dd, J = 10.9, 1.4) & & & & & \\ Me(9''') & 1.80 & (s) & 12.0 & C(1'''), C(2'''), C(3''') \\ Me(10''') & 1.23 & (s) & 27.5 & C(5'''), C(6'''), C(7''') \end{array}$	CH ₂ (5'''')	1.52 - 1.56(m)	41.6	C(3''''), C(6''''), C(7''''), C(10'''')
$ \begin{array}{cccc} H-C(7''') & 5.86 & (dd, J=17.6, 10.9) & 145.8 & C(6''') \\ CH_2(8''') & 5.21 & (dd, J=17.6, 1.4) & 5.06 & 112.2 & C(6'''') \\ & & & & & & & \\ Me(9''') & 1.80 & (s) & 12.0 & C(1'''), C(2'''), C(3''') \\ Me(10''') & 1.23 & (s) & 27.5 & C(5'''), C(6''''), C(7''') \\ \end{array} $	C(6'''')	_	73.3	
$\begin{array}{c} \text{CH}_2(8^{\prime\prime\prime\prime}) & 5.21 \ (dd, J = 17.6, 1.4) \ 5.06 & 112.2 & \text{C(6}^{\prime\prime\prime\prime}) \\ & (dd, J = 10.9, 1.4) & & \\ \text{Me}(9^{\prime\prime\prime\prime}) & 1.80 \ (s) & 12.0 & \text{C(1}^{\prime\prime\prime\prime}), \text{C(2}^{\prime\prime\prime\prime}), \text{C(3}^{\prime\prime\prime\prime}) \\ \text{Me}(10^{\prime\prime\prime\prime}) & 1.23 \ (s) & 27.5 & \text{C(5}^{\prime\prime\prime\prime}), \text{C(6}^{\prime\prime\prime\prime}), \text{C(7}^{\prime\prime\prime\prime}) \end{array}$	H-C(7"")	5.86 (dd, J = 17.6, 10.9)	145.8	C(6'''')
$ \begin{array}{cccc} (dd, J = 10.9, 1.4) \\ Me(9^{\prime\prime\prime\prime}) & 1.80 \ (s) & 12.0 & C(1^{\prime\prime\prime\prime}), C(2^{\prime\prime\prime\prime}), C(3^{\prime\prime\prime\prime}) \\ Me(10^{\prime\prime\prime\prime}) & 1.23 \ (s) & 27.5 & C(5^{\prime\prime\prime\prime}), C(6^{\prime\prime\prime\prime}), C(7^{\prime\prime\prime\prime}) \end{array} $	CH ₂ (8"")	5.21 (dd, J = 17.6, 1.4) 5.06	112.2	C(6''')
Me(9''')1.80 (s)12.0 $C(1'''), C(2'''), C(3''')$ $Me(10''')$ 1.23 (s)27.5 $C(5'''), C(6'''), C(7''')$,	(dd, J = 10.9, 1.4)		- *
Me(10''') 1.23 (s) 27.5 C(5'''), C(6'''), C(7''')	Me(9'''')	1.80 (s)	12.0	C(1''''), C(2''''), C(3'''')
	Me(10'''')	1.23(s)	27.5	C(5''''), C(6''''), C(7'''')

Table 2. ¹H- and ¹³C-NMR Data^a) (CD₃OD) and Significant HMBCs for 3. δ in ppm, J in Hz.

^a) All $\delta(H)$ and $\delta(C)$ assignments are based on 2D-NMR (COSY, HSQC, HMBC) spectral data. ^b) Recorded at 600 MHz. ^c) Recorded at 150 MHz). ^d) Signal pattern unclear due to overlapping.

Figure. Significant HMBCs $(H \rightarrow C)$ for 3

olefinic H-atom at δ 6.80, three olefinic-H-atom signals as an *ABX* system at δ 5.86 (*dd*, J = 17.6, 10.9 Hz), 5.21 (*dd*, J = 17.6, 1.4 Hz), and 5.06 (*dd*, J = 10.9, 1.4 Hz), a pair of nonequivalent CH₂ resonances at δ 2.13–2.20 (*m*, 2 H) and 1.52–1.56 (*m*, 2 H), as well as two Me signals at δ 1.80 (*s*) and 1.23 (*s*), corresponding to a menthiafoloyl substituent²) [23][24]. The configuration at the quaternary C(6'''') atom was not determined due to the low yield of compound **3**. The location of the menthiafoloyl unit was found be the OH–C(6') of glucose due to the downfield shifts for C(6') (δ 64.1) and CH₂(6') (δ 4.26) and upfield shift for C(5') (δ 73.0). Finally, the HMBC experiment permitted to clarify the interfragmental connectivities (*Figure*). Thus, cross-peaks were observed between H–C(1') (δ 4.43) of glucose and C(α) (δ 72.4) of the (dihydroxyphenyl)ethyl moiety, between H–C(1'') (δ 5.22) of rhamnose and C(3') (δ 81.2) of glucose, between H–C(4') (δ 5.04) of glucose and the C=O C-atom (δ 168.0) of the caffeoyl unit, and between CH₂(6') (δ 4.26) of glucose and the C=O C-atom (C(1''''), δ 169.1) of the menthiafoloyl moiety.

Galypumoside A and B are the second and third examples of a phenylethyl glycoside obtained from the genus Globularia, bearing two aromatic acyl units; the first example was the globusintenoside isolated from G. sintenisii [15]. Galypumoside C is an unusual phenylethyl glycoside containing a monoterpenoid acid in its structure. To the best of our knowledge, it is the first representative of this type of phenylethyl glycoside derivatives. Alpinoside, lytanthosalin, syringaresinol 4'-O- β -glucopyranoside and 6-hydroxyluteolin 7-O-sophoroside are also being reported for the first time from G. alypum. Recent studies have reported the occurrence of phenylethyl, flavonoid, and iridoid glycosides in Moroccan G. alypum [9][10]. A new 7-chlorinated iridoid glucoside, a new phenylethyl glycoside (6'-O-coumaroyl-1'-O-[2-(3,4-dihydroxyphenyl)ethyl]-β-D-glucopyranoside), as well as new flavon glycosides have been reported in these studies. Regarding iridoid glucosides, no chlorinated iridoids were isolated from the eight *Globularia* species studied up to date by our group [11-15]. On the other hand, the 8,9-unsaturated iridoid glucoside, alpinoside, which was isolated from most of the Globularia species growing in the flora of Turkey including G. alypum, has not been reported from Moroccan species. Concerning the phenylethyl glycosides, although the phenylethyl glycoside composition of both Turkish and Moroccan G. alypum seems to be different, it is interesting to note that the phenylethyl glycosides obtained from both materials contain a p-coumaroyl unit, which has not been encountered in other Globularia species investigated so far. Thus, the occurrence of the p-coumaroyl-bearing phenylethyl glycosides could be of taxonomic significance for the title plant. The

differences of the secondary metabolite profiles of *G. alypum* collected from different countries may arise from the geographical conditions.

The authors wish to thank Prof. Dr. *Erdal Bedir*, Ege University, Faculty of Engineering, Department of Bioengineering, İzmir for providing plant material.

Experimental Part

General. TLC: precoated silica gel 60 F_{254} (Merck) aluminium plates; eluents CHCl₃/MeOH/H₂O 80:20:1, 70:30:3, and 61:32:7, and AcOEt/MeOH/H₂O 20:2:1; visualization by spraying with 1% vanillin/H₂SO₄ soln. followed by heating at 105° for 2 – 3 min. Column chromatography (CC): silica gel 60 (0.063 – 0.200 mm; Merck, Darmstadt) and Sephadex LH-20 (Fluka). Vacuum liquid chromatography (VLC): LiChroprep C_{18} (Merck). Medium-pressure liquid chromatography (MPLC): Lewa M5 pump, LKB-17000-Minirac fraction collector, Rheodyne injector, Büchi columns (3 × 24 cm and 2.6 × 46 cm, LiChroprep C_{18} ; Merck) and Combi Flash Companion (Isco), Redi step column (LiChroprep C_{18} , 4 × 23 cm; Teledyne Isco). Semi-prep. high-performance liquid chromatography (HPLC): Agilent-1100 system (Agilent, Palo Alto, CA, USA), equipped with a $C_{18}\mu$ -Bondapack column (7.8 × 300 mm, 10 µm; Waters Spherisorb S5ODS2), a binary pump (G-1312A). Optical rotations: Jasco-DIP-1000 polarimeter. UV Spectra: HP-Agilent-8453 spectrophotometer; λ_{max} in nm. IR Spectra (KBr): Perkin-Elmer-2000 FT-IR spectrometer; in cm⁻¹. NMR Spectra: Bruker-AMX-600 instruments (600 (¹H) and 150 MHz (¹³C)) with XWIN NMR 3.6 software package; δ in ppm, J in Hz. HR-MALDI-MS: Voyager DE in MeOH; positive-ion mode; in m/z.

Plant Material. G. alypum L. was collected from İzmir, between Çeşme and Urla, West Anatolia, Turkey, in April 2004. A voucher specimen (IZEF 830) has been deposited with the Herbarium of the Faculty of Pharmacy, Ege University, İzmir, Turkey.

Extraction and Isolation. The air-dried and powdered leaves of G. alypum (350 g) were extracted twice with MeOH $(2 \times 21, 4h)$ at 45° . The combined MeOH extracts were concentrated (85 g, yield 24%). The MeOH extract was suspended in H_2O (150 ml), and partitioned with CHCl₃ (4 × 150 ml). The H₂O layer provided 75 g of an extract. An aliquot of the H₂O extract (45 g) was separated by VLC (LiChroprep C_{18} (120 g), H₂O (300 ml), then $20 \rightarrow 100\%$ MeOH/H₂O in steps of 20% of MeOH (each 300 ml)): Frs. A – H. Fr. B (2.44 g) was subjected to MPLC (LiChroprep C_{18} , 2.6 × 46 cm column, 0 \rightarrow 60% MeOH/H₂O in steps of 5% of MeOH (each 200 ml)): catalpol (5 mg), alpinoside (8 mg), syringin (49 mg), globularin (310 mg), and Fr. B_4 and B_5 . Likewise Fr. B_4 (200 mg) was applied to MPLC (C_{18} , 3 × 24 cm column, $15 \rightarrow 40\%$ MeOH/H₂O in steps of 5% of MeOH (each 200 ml)): globularimin (15 mg) and Fr. B_{4b} and B_{4c}. Separation of Fr. B_{4b} (60 mg) by CCs (Sephadex LH-20 (20 g), MeOH (200 ml), then SiO_2 (5 g), $CH_2Cl_2/MeOH/H_2O$ 80:20:1 and 61:32:7 (both 100 ml)) gave calceolarioside A (9 mg) and 6-hydroxyluteolin 7-O-sophoroside (3 mg). Globularicisin (9 mg) and verbascoside (43 mg) were isolated from Fr. B_{4c} (90 mg) by CC (SiO₂ (13 g), CH₂Cl₂/MeOH/H₂O 90:10:1, 80:20:1, and 75:25:2 (each 100 ml)). Fr. B_5 (384 mg) was further submitted to CC (SiO₂ (38 g), CHCl₃/MeOH/H₂O 90:10:1, 85:15:1, 80:20:1, 80:20:2, and 70:30:3 (each 100 ml)): syringaresinol 4'-O-β-D-glucopyranoside (4 mg), globularin (170 mg), and globularidin (9 mg). Globularinin (8 mg) was isolated from Fr. D (2.0 g) by successive chromatographic methods: MPLC (C_{ls} , $2.6 \times 46 \text{ cm column}$, $15 \rightarrow 70\%$ MeOH/H₂O in steps of 5% of MeOH (each 200 ml)) and CC (SiO₂ (12 g), CHCl₃/MeOH/H₂O 85:15:1, 80:20:2, 70:30:3, and 61:32:7 (each 100 ml)). Fr. F (1.1 g) was separated by MPLC (C_{18} , 4 × 23 cm column, 30-75% MeOH/H₂O gradient): globularin (30 mg) and Frs. F₂₋₇ Fr. F₅ (150 mg) was applied to CC (SiO₂ (18 g), CH₂Cl₂/MeOH/H₂O 90:10:1, 80:20:2, and 70:30:3 (each 100 ml)): lytanthosalin (7 mg). Fr. F₆ (120 mg) likewise was subjected to CC (SiO₂ (15 g), CH₂Cl₂/MeOH/H₂O 80:20:2 and 70:30:3 (both 100 ml)): mixture of galypumosides A and B (1/2; 10 mg) exhibiting a single spot on TLC (CH₂Cl₂/ MeOH/H₂O 80:20:2; R_f 0.23). Separation of 1/2 (each 2 mg) was hardly achieved by HPLC (C_{18} , 7.8 × 300 mm column, $35 \rightarrow 40\%$ MeCN/H₂O for 20 min): $t_{\rm R}$ 12.39 (1) and 12.66 (2). Fr. F_7 (90 mg) was separated by CC (SiO₂ (12 g), CH₂Cl₂/MeOH/H₂O 90:10:1 and 80:20:2 (both 100 ml)): galypumoside C (3; 7 mg).

Galypumoside A (=2-(3,4-*Dihydroxyphenyl*)*ethyl* 3-O-(6-*Deoxy*-α-L-*mannopyranosyl*)-β-D-glucopyranoside 4-[(2E)-3-(3,4-*Dihydroxyphenyl*)prop-2-*enoate*] 6-[(2E)-3-(4-*Hydroxyphenyl*)prop-2*enoate*]; **1**): Amorphous powder. [a]_D²⁴ = -72.0 (c = 0.10, MeOH). UV (MeOH): 222 (sh, 4.36), 289 (sh, 4.22), 319 (4.35). IR (KBr): 3435, 2923, 2852, 1739, 1630, 1594, 1384. ¹H- and ¹³C-NMR: *Table 1*. HR-MALDI-MS: 793.2327 ([M + Na]⁺, C₃₈H₄₂NaO⁺₁₇; calc. 793.2320).

Galypumoside B (=2-(3,4-Dihydroxyphenyl)ethyl 3-O-(6-Deoxy- α -L-mannopyranosyl)- β -D-glucopyranoside 4-[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate] 6-[(2E)-3-(4-Hydroxy-3-methoxyphenyl)prop-2-enoate]; **2**): Amorphous powder. [a]₂₄²⁴ = -75.0 (c = 0.10, MeOH). UV (MeOH): 221 (sh, 4.43), 289 (sh, 4.27), 327 (4.37). IR (KBr): 3435, 2923, 2853, 1739, 1631, 1602, 1454, 1384. ¹H- and ¹³C-NMR: Table 1. HR-MALDI-MS: 823.2431 ([M + Na]⁺, C₃₉H₄₄NaO⁺₁₈; calc. 823.2425).

Galypumoside C (=2-(3,4-Dihydroxyphenyl)ethyl 3-O-(6-Deoxy-α-L-mannopyranosyl-β-D-glucopyranoside 4-[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate] 6-[6-Hydroxy-2,6-dimethylocta-2,7-dienoate]; **3**): Amorphous powder. [a]_D²⁴ = - 85.0 (c = 0.30, MeOH). UV (MeOH): 221 (sh, 4.70), 291 (sh, 4.13), 329 (4.22). IR (KBr): 3435, 2922, 2851, 1699, 1630, 1609, 1522, 1384. ¹H- and ¹³C-NMR: *Table* 2. HR-MALDI-MS: 813.3056 ($[M + Na]^+$, C₃₉H₅₀NaO₁₇; calc. 813.3048).

REFERENCES

- J. R. Edmondson, in 'Flora of Turkey and the East Aegean Islands', Ed. P. H. Davis, University Press, Edinburgh, 1982, Vol. 7, p. 27.
- [2] H. Duman, Bot. J. Linn. Soc. 2001, 137, 425.
- [3] J. Bellakhdar, R. Claisse, J. Fleurentin, C. Younos, J. Ethnopharmacol. 1991, 35, 123.
- [4] A. Ziyyat, A. Legssyer, H. Mekhfi, A. Dassouli, M. Serhrouchni, W. Benjelloun, J. Ethnopharmacol. 1997, 58, 45.
- [5] F. Skim, A. Kaaya, J. T. Jaouhari, H. B. Lazrek, M. Jana, H. El Amri, Fitoterapia 1999, 70, 3882.
- [6] F. Skim, H. B. Lazrek, A. Kaaya, H. El Amri, M. Jana, Therapie 1999, 54, 711.
- [7] H. Jouad, M. Maghrani, M. Eddouks, J. Ethnopharmacol. 2002, 81, 351.
- [8] N.-E. Es-Safi, A. Kollmann, S. Khlifi, P.-H. Ducrot, LWT-Food Sci. Technol. 2007, 40, 1246.
- [9] N.-E. Es-Safi, S. Khlifi, A. Kollmann, L. Kerhoas, A. El Abbouyi, P.-H. Ducrot, *Chem. Pharm. Bull.* 2006, 54, 85.
- [10] N.-E. Es-Safi, S. Khlifi, L. Kerhoas, A. Kollmann, A. El Abbouyi, P.-H. Ducrot, J. Nat. Prod. 2005, 68, 1293.
- [11] İ. Çalış, H. Kırmızıbekmez, H. Rüegger, O. Sticher, J. Nat. Prod. 1999, 62, 1165.
- [12] İ. Çalış, H. Kırmızıbekmez, O. Sticher, J. Nat. Prod. 2001, 64, 60.
- [13] İ. Çalış, H. Kırmızıbekmez, D. Taşdemir, C. M. Ireland, Chem. Pharm. Bull. 2002, 50, 678.
- [14] H. Kırmızıbekmez, P. Akbay, O. Sticher, İ. Çalış, Z. Naturforsch., C: Biosci. 2003, 58, 181.
- [15] H. Kırmızıbekmez, İ. Çalış, S. Piacente, C. Pizza, Helv. Chim. Acta 2004, 87, 1172.
- [16] M. Nicoletti, C. Galeffi, I. Messana, J. A. Garbarino, V. Gambaro, E. Nyandat, G. B. Marini-Bettola, *Gazz. Chim. Ital.* 1986, 116, 431.
- [17] O. Sticher, M. F. Lahloub, *Planta Med.* 1982, 46, 145.
- [18] R. K. Chaudhuri, O. Sticher, Helv. Chim. Acta 1981, 64, 3.
- [19] R. K. Chaudhuri, O. Salama, O. Sticher, Helv. Chim. Acta 1981, 64, 2401.
- [20] S. R. Jensen, C. E. Olsen, K. Rahn, J. H. Rasmussen, Phytochemistry 1996, 42, 1633.
- [21] B. Klimek, Phytochemistry 1988, 27, 255.
- [22] T. Deyama, T. Ikawa, S. Nishibe, Chem. Pharm. Bull. 1985, 33, 3651.
- [23] İ. Çalış, A. Yürüker, H. Rüegger, A. D. Wright, O. Sticher, Helv. Chim. Acta 1993, 76, 416.
- [24] R. Taskova, N. Handjieva, D. Peev, S. Popov, Phytochemistry 1998, 49, 1323.

Received March 10, 2008